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About The EPT Team 

The Energy Performance Tracking (EPT) team is responsible for defining and documenting the Monitoring, 

Targeting, and Reporting (MT&R) methodologies employed in the Energy Smart Industrial’s (ESI) Strategic 

Energy Management (SEM) project implementation and maintaining the contents of this document. The EPT 

team is chaired by the Bonneville Power Administration (BPA) Energy Management Engineer and includes 

participants from BPA’s Energy Efficiency team and implementation Program Partner(s). 
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Introduction 

The Energy Smart Industrial (ESI) program uses a Monitoring, Targeting, and Reporting (MT&R) methodology—

in conjunction with a process to track specific activities—to estimate energy savings for Strategic Energy 

Management (SEM) projects. This document outlines recommended methodologies to 1) establish baseline 

energy models at a whole-facility or subsystem level, and 2) quantify energy savings associated with the 

implementation of multiple energy efficiency measures (EEMs) over a defined performance period.  

In the context of ESI whole-facility or subsystem energy management, the default approach is a top-down, 

forecasting-based regression model as described by the International Performance Measurement and 

Verification Protocol (IPMVP).1 Unless otherwise noted, the ESI MT&R Guidelines are intended to align with the 

best practices outlined by IPMVP for "Option C" models. 

Developing a linear regression model to monitor and report energy savings for industrial SEM projects while 

maintaining consistency with IPMVP is an iterative process. This process requires the practitioner to work with 

large data sets, to understand the major energy drivers in a facility, and to have a working knowledge of 

statistics. The predictive ability of the model depends largely upon the practitioner’s ability to navigate this 

iterative process in a sequential manner.  

Sections 1-3 of this document focus on the model development process. Sections 4-6 of this document focus 

on the quantification of energy savings attributable to SEM. Specific focus is given to addressing the 

separation of operations and maintenance savings from concurrent capital projects and adjusting the baseline 

model for non-routine changes to plants or systems. 

 

 

 

                                                           

1  International Performance Measurement and Verification Protocol. Efficiency Evaluation Organization. 10000-1:2016. 

www.evo-world.org. 

http://www.evo-world.org/
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1. Characterizing the Facility or Process 

1.1 Identify Measurement Boundary 

• For whole-facility energy models, the measurement boundary consists of all the systems and 

processes served by one or more utility meters. While energy sources may include natural gas, steam, 

or compressed air, the examples in this document assume electrical energy as the targeted response 

variable. 

• Care must be taken to ensure that: 

o All electrical energy crossing the measurement boundary has been documented and 

accounted for. Documentation may include one-line electrical drawings, energy maps, and 

system schematics which identify equipment and processes within the measurement 

boundary.  

o Significant electrical energy-consuming equipment within the measurement boundary that 

inconsistently supplies other areas of the plant is documented and accounted for. An example 

is an air compressor within the measurement boundary that supplies variable amounts of 

compressed air to equipment both within the measurement boundary and other areas of the 

plant. In such cases, effective sub-metering strategies need to be deployed to measure the 

energy usage crossing the measurement boundary for reporting purposes. 

o If other energy sources are used to offset electrical energy use within the measurement 

boundary, then effective sub-metering strategies must be deployed to measure the changing 

energy sources for reporting purposes. One such example is a drying process that can use a 

fan, a steam heater, or a combination of both. 

 

Figure 1. Illustration of measurement boundary, including where product, energy, steam, and 

compressed air cross the measurement boundary. 
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1.2 Identify Production Energy Drivers 

• The primary energy driver is typically production. It is important to quantify how many product types 

are manufactured in the facility and understand whether there is likely to be a difference in energy 

intensity based on lead time, process flow, batch size, etc. Raw material, work in progress, and 

finished product metrics each have merits and demerits for selection as primary energy driver 

variables. An informed decision will consider factors such as lead time, the desire to account for yield 

effects, and the prevalence of inventory fluctuations in-process or at the finished product stage. 

• The source of production data must be understood to assess how it physically relates to the energy 

intensive processes. If a significant offset exists between the energy-intensive process step and the 

production measurement gate, a compensating time-series shift that corresponds to the magnitude of 

the time offset may be applied (see Section 2.3). 

• Process flow diagrams, piping and instrumentation diagrams, and value stream maps can be helpful 

at this stage. 

Table 1. Consideration for Selection of Production Variable 

MEASUREMENT GATE MERIT DEMERIT 

Raw material input 
Provides a mechanism to capture the 

effects of different raw material types. 

Will not produce a signal for energy 

impact of yield or productivity 

improvements. 

Work in progress 

Allows selection of production variable at 

energy-intensive process step, thereby 

minimizing time series shift. 

Availability of data may be limited. Does 

not provide mechanism for incentivizing 

energy impact of yield/productivity 

improvement downstream from point of 

measurement. 

End of line metric 

Provides mechanism for incentivizing 

energy impact of yield/productivity 

improvements. 

May induce a time-series shift for long 

lead-time processes. 

Finished product 

shipped 

Reliable data is typically available from 

business systems. 

May not correspond with production if 

finished product inventory fluctuates. 

 

1.3 Identify Other Energy Drivers – Hypothesis Stage 

• Based on the system inventory and process characteristics, form a hypothesis of other energy drivers. 

The most common examples are ambient conditions (dry-bulb and wet-bulb temperatures) but can 

include variables such as raw material properties, operational modes (weekend/day), occupancy, etc. 

• Energy drivers must be tested for statistical significance (see Section 3.1). A suitable explanation must 

be provided if an energy driver that is not statistically significant is nevertheless used in the model. 

• Ambient temperature must be tested for statistical significance. If temperature is omitted from the 

model, the rationale must be documented.  

• In the process of variable selection, the model developer will face competing objectives: capture the 

full subset of statistically significant variables and provide the customer with a model that is simple 

and easy to maintain. No single selection criteria will provide the perfect solution, so the modeler must 

rely on his or her experience and engineering judgment. 

• Including process variables in the energy model may add to the explanatory power of the model but 

can limit the ability to measure savings. If a process variable is included in the model and a key EEM 

has a direct impact on this variable, then the energy savings measured using this model are likely to 
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be inaccurate. While sometimes necessary for model fitness, including process variables is not a 

preferred option. 

• See Figure 2 for example. Blast freezers generally operate at less than full capacity, and runtime may 

trend with energy consumption. An energy efficiency measure exists to reduce freezer run time. 

However, if the number of run hours is included as a model variable, the savings from this opportunity 

would not be estimated. Pounds of product frozen would be a more appropriate variable to include. 

 

Figure 2. Example of energy use and process variable tracking. Like energy use, the process 

variable can be influenced by energy efficiency measures. 

1.3.1 Weather Data 

Acceptable sources of weather data include the National Climate Data Center (NCDC) and Weather 

Underground. Use of weather data from Energy Management and Information Systems (EMIS) that 

agree with these sources is also acceptable. A change in the weather data source during the 

reporting period should trigger an update to the original model, followed by EPT team review. 

1.4 Identify Utility Meters or Submeters 

• Document which processes are served by specific meters. This step will be important in determining 

whether to create a single model for a facility or to create discrete models for functional units that 

collectively represent the entire facility’s energy use. 

• Meter serial numbers, utility account numbers, or other unique identifiers must be recorded in the 

baseline report. 

• If an end user-owned submeter will be used in place of the utility meter, the submeter data should be 

appropriately aggregated and compared to a utility bill. If the submetered measurement boundary 

does not align with a utility meter, then meter calibration should be confirmed by a certified 

electrician. The electrician shall strive to use no less than third-order, NIST-traceable calibration 

equipment, as recommended by ASHRAE Guideline 14-2014, Section 6.4.2.2 

                                                           

2  ASHRAE Guideline 14–Measurement of Energy, Demand, and Water Savings. American Society of Heating, 

Refrigerating and Air Conditioning Engineers. 2014. 
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2. Establishing a Baseline Data Set 

2.1 Determine the Baseline Period 

• The baseline period should encompass the cycles and ranges of the hypothesized primary and 

secondary energy drivers and extend as close to the start of the reporting period as possible. Ideally, 

the baseline period captures two or more cycles of operation. 

• If re-baselining is required for participants re-enrolling in SEM, the last reporting period of the previous 

engagement is typically used for the new baseline period.  

• The guideline for the minimum number of baseline data points is: 6 × number of coefficients in the 

model. If the data set falls below this guideline, the model will likely be “over-fitted”, and the model’s 

comparative performance will likely deteriorate during the reporting period. Since the number of 

coefficients is not known at this point, it can be assumed that there will be one coefficient for each 

hypothesized variable, plus the intercept. 

• Energy use that exhibits seasonal dependence should use complete years (e.g. 12, 24, or 36 months) 

of continuous data during the baseline period to ensure balanced representation of all operating 

modes. Models that use other ranges of baseline data can create statistical bias by under- or over-

representing normal modes of operation.3 

• Data with daily or weekly time resolutions typically provide better insights about processes, and thus 

result in more accurate models when compared to data of longer durations such as monthly data. 

Process lead time should be considered when selecting the modeling interval, both for determining 

the modeling interval and applying time-series offsets with the corresponding energy data. 

• The NW Strategic Energy Management Collaborative white paper, “Common Considerations in 

Defining Baselines for Industrial Strategic Energy Management Projects,” provides additional guidance 

and case studies on the selection of an appropriate baseline period and the treatment of non-

production periods in a daily model.4 

2.1.1 Temporary and Permanent Baseline Events – Addressing Non-Routine Events, 

Incentivized or Non-Incentivized Energy Projects 

Utility records should be reviewed to confirm whether incentivized energy projects occurred within 

the measurement boundary during the proposed baseline period. If so, project records should be 

obtained to accurately capture implementation dates and magnitude of verified savings. 

To determine the effective date for an incentivized EEM, apply the earlier of the project 

measurement and verification (M&V) start date, or the date that an inflection is observed in the 

energy data (see Appendix A). 

Interviews with the end user and serving utility should be conducted to determine if other non-

incentivized energy projects occurred during the proposed baseline period. If either case is 

identified, one of the options in Appendix A can be applied to ensure savings are not double 

counted. 

                                                           

3  International Performance Measurement and Verification Protocol. Efficiency Evaluation Organization. 10000-1:2012. 

Section 4.8.4. 
4  Common Considerations in Defining Baselines for Industrial Strategic Energy Management Projects. NW Industrial 

Strategic Energy Management (SEM) Collaborative. 2014. 
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2.2 Collect and Review Data  

• When collecting data for energy or energy drivers, ensure that accurate records are maintained 

regarding the data source (e.g., end user database, production gate, weather station). 

• Perform an initial review for outliers by plotting each variable independently in a time series format. 

Identify and flag erroneous entries. Control limits of three standard deviations, ±3 sigma (σ), from the 

mean are often useful for identifying outliers in normally distributed data.  

 

Figure 3. Example of graphical method to identify anomalies. 

• Missing data points or data entry errors should be investigated and corrected by the facility, if 

possible. 

• Any outliers that are ultimately removed from the baseline data set should be annotated with 

assignable cause. Understanding assignable cause will likely require communication with the end 

user’s Energy or Data Champion. 

• Generally, avoid replacing missing or outlier data with estimated values. Exceptions are permissible 

when data is provided at a much finer interval than the model e.g., if time interval of data is 15 

minutes or hourly. For energy data, best practice is that values in aggregate match a known reference 

such as utility billing history.  

• Examine data obtained from industrial control systems with a higher level of scrutiny. This data is 

often hourly or sub-hourly and frequently includes the following types of “bad data”: 

o Erroneous values: a value such as “Control System Error” 

o Null values: no data for the given variable and observation 

o Anomalous operations: values that appear out of range of normal operations. This may 

include values that remain constant when equipment is off.  

• Observations that appear anomalous should be reviewed with plant personnel to better understand 

the operation of the system. 

• If any data point within the observation is deemed erroneous, null, or anomalous, the observation 

should be removed and documented in the Energy Model Report. If the number of observations per 

time period vary due to removal of invalid data, a weighted regression can be considered as outlined 

in Appendix E. 
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• Graphing data can be an effective way to detect erroneous and anomalous data. For example, in 

Figure 4, power within the dashed box is considerably lower than power above the dashed box for 

similar machine speeds. This suggests that the operation of this machine should be investigated prior 

to performing calculations. 

 

Figure 4. Illustration of control system data showing machine power vs. machine speed. 

2.3 Adjust for Time-Series Offsets 

• Use time-series plots to identify consistent offsets between energy use and independent variables. For 

example, if the energy-intensive process is two days’ lead time from the production measurement 

point, a two-day time series adjustment may need to be applied to the production variable. However, 

this approach may be unnecessary if a longer model interval is selected (e.g., weekly versus daily 

model).  

 

Figure 5. Example of a time-series off-set (energy and production vs. time). 

• If necessary, apply the time-series offset to the relevant independent variable(s), maintaining the 

original source data in a separate file.  

• At this point, the baseline data set is ready for the regression modeling process.  
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2.4 Form a Hypothesis Model 

• The hypothesis model should be driven by an informed understanding of the physical characteristics 

of the process. 

• Non-linear and interactive terms should be evaluated when suggested by the data. 

• Use scatter diagrams to understand the relationship between energy use and energy drivers. For 

example, a plant’s energy intensity often becomes progressively more efficient at higher production 

volumes. This implies a non-linear relationship between energy use and production and is illustrated in 

Figure 6.  

 

Figure 6.  Example of a scatter plot (energy vs. production). 

• The energy profiles of facilities with large space conditioning and refrigeration loads often exhibit a 

“change-point” characteristic. Modeling a facility that exhibits a change-point with a single linear 

model would introduce unnecessary error. Instead, this system should be modeled with a change-

point model. The presence of a change-point can be identified by plotting energy use versus ambient 

temperature, as illustrated in Figure 7.  

• For models with daily time resolution, there is no loss in information when using a change-point model 

over a degree-day model. For longer time periods, the differences between the two approaches are 

generally slight, except in mild climates with many temperatures near the balance-point.5 Therefore, 

consider a degree-day approach when energy use is driven by temperature and the facility is in a mild 

climate.  

• When two or more independent variables exhibit correlation, multicollinearity is present within the 

model. The presence of collinear variables can affect the precision of individual coefficients and can 

understate the statistical significance of individual predicator variables.  

                                                           

5  Discussion Regarding the Use of Average Temperature or Degree-Days in Energy Regressions. SBW Consulting. 

November 28, 2015.  
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Figure 7. Example of a 3-parameter cooling change-point model. 

• An R2 that exceeds 0.7 between any two independent variables generally indicates the need to 

address multicollinearity.6 A correlation matrix is useful in identifying multi-collinearity.  

• Some ways to address multicollinearity include: 

o If submeters are available, split the facility into two or more measurement boundaries and 

split variables by measurement boundary as appropriate.  

o Re-specify the model. Consider excluding the variable that provides the least improvement to 

the model.  

• When multicollinearity is present, the modeler should clearly explain the rationale for both the 

inclusion and exclusion of variables in the energy model. 

• The modeler should exercise caution when excluding variables that might be significant energy drivers 

as this can bias the model. Further work has been done to address the effects of multicollinearity in 

baseline regression models by the NW Industrial Strategic Energy Management (SEM) Collaborative.7 

2.4.1 Selection of One or Multiple Models 

Some industrial facilities have distinct processes and operating modes that vary throughout the 

year. These may be high and low production periods such as maintenance shutdowns and 

seasonal production or multiple production processes that independently influence energy 

consumption. The resultant variation in energy use is often difficult to capture with energy drivers 

and indicator variables alone in a single regression model. 

Developing models for the distinct operating states is a common approach to eliminate model bias 

between the different modes of operation. When operating modes induce a bias in the model, the 

use of multiple models should be considered. When the facility has one dominant mode of 

operation, and the energy use and expected savings during other times are small, a model that 

includes only this mode is generally the preferred option. 

                                                           

6  Tools and Methods for Addressing Multicollinearity in Energy Modeling. NW Industrial Strategic Energy Management 

(SEM) Collaborative. 2013. 
7  Ibid. 
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Utility and end-user feedback should be solicited in the process. Judgment is required to balance 

accuracy versus simplicity.  

Table 2. Consideration for Selection of One or Multiple Models  

MODEL SELECTION MERIT DEMERIT 

Single Model – all 

operational modes 

• Simple to explain and use for 

tracking purposes. 

• Uses all data in the baseline period, 

increasing the number of 

observations. 

• Includes full range of each variable.  

• Models often tend to over predict 

during low or no production. 

• R-squared values may be inflated 

due to extended range 

• Collinear variables cannot be 

separated to their appropriate 

energy meter contribution. 

Single Model – one 

operational mode 

• Model provides better prediction 

during production. 

• Eliminates the complexity of 

maintaining multiple models. 

• Unable to estimate savings for 

mode(s) not modeled. 

• Model may not include full range of 

each variable.   

Multiple Models 

• Each model provides better 

prediction for all modes of operation. 

• Estimates savings for each mode 

modeled.  

• When applicable, separates collinear 

variables based on engineering 

Judgment of system 

• Increases complexity of the tracking 

and measuring of energy savings. 

• Reduces the number of data points 

for each model respectively.  

3. Developing a Baseline Model  

3.1 Assess Statistical Significance of Independent Variables  

• Screening variables for statistical significance is a critical step in the model review process, as the 

inclusion of erroneous variables will introduce error in the model. Likewise, the omission of critical 

energy driver variables will negatively affect the ability of the model to accurately characterize 

variation in energy use. The following guidelines can be used to test for the significance of each 

independent variable: 

o t-statistic > 2.0 for each variable (IPMVP 2012)8 

o At least one variable with a p-value < 0.10 (SEP 2017)9  

• For ESI SEM projects, the IPMVP will serve as the official guideline. 

• Appendix C shows where these values can be obtained from typical regression output tables. 

• Independent variables that do not pass the above tests should not be included. Exceptions may be 

permissible in cases where a variable shows moderate statistical significance and is generally 

understood to impact energy use for the target system. The rationale for such exceptions must be 

documented.  

                                                           

8  Efficiency Evaluation Organization, Appendix B. p. 97. 
9  Superior Energy Performance Measurement and Verification Protocol for Industry. Written under contract by The 

Regents of the University of California for the United States Department of Energy. March 8, 2017. Section 6.4.1 p. 23. 
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3.2 Statistical Criteria for Model Fitness 

• While model quality cannot be judged solely on a single statistic, the fitness of the overall model can 

be judged against several guidelines for forecast regression models: 

o R²: > 0.75 (IPMVP 2012)10 

o R²: > 0.5 (SEP 2012)11 

o Net Determination Bias (NDB): < 0.005% (ASHRAE Guideline 14-2014)12 

• For ESI SEM projects, the IPMVP will serve as the official guideline. However, the following parameters 

shall be documented for the overall model: R², adjusted R², coefficient of variation, NDB, auto-

correlation coefficient. 

• Adjusted R² can help determine when the addition of a variable improves the model. If adjusted R² 

decreases as variables are added, the model is likely to be over-fit. 

• Appendix C shows where the basic regression parameters can be obtained from typical regression 

output tables. 

• Plot the actual versus predicted energy use on a scatter diagram. Check that the point pattern is 

narrowly clustered and uniformly distributed along the diagonal as illustrated in Figure 8. 

 

Figure 8. Example of predicted vs. actual scatter plot. 

• Typically, regression-based energy models exhibit positive auto-correlation. Positive auto-correlation 

occurs when the sign change of the residuals is infrequent. Conversely, frequent sign changes in the 

residual values results in negative auto-correlation. 

• There is not a defined threshold for the autocorrelation coefficient in the model development phase. 

However, a review of literature finds references to “light autocorrelation” for levels in the 0.3 range.13 

This becomes a factor in the uncertainty analysis, discussed in Section 4.5.1. An example of 

autocorrelation in a time series graph is shown in Figure 9. 

                                                           

10  Efficiency Evaluation Organization, Appendix B. p. 95. 
11  The Regents of the University of California, Section 6.4.1 p. 23. 
12  ASHRAE, p. 16. Table 4.2. 
13  Guidelines for Verifying Existing Building Commissioning Project Savings – Using Interval Data Energy Models: IPMVP 

Options B and C. California Commissioning Collaborative. November 12, 2008. Appendix B, Page 70. 
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Figure 9. Example of autocorrelation in a time series graph. 

• Calculate the autocorrelation coefficient (see Appendix D) and plot the model residuals over the 

baseline period. If autocorrelation is detected, the number of independent data points is effectively 

reduced. The typical remedy involves increasing the sample size, or selecting a different data interval. 

• High autocorrelation may indicate the omission of a key variable, or the occurrence of an event that 

changed energy consumption characteristics during the baseline. 

• The Durbin-Watson test can be used to determine if auto-correlation is statistically significant. The 

Durbin-Watson test statistic, d, ranges from 0-4, where: 

o d = 2, residuals are not correlated 

o d ≪ 2, residuals are positively auto-correlated  

o d ≫ 2, residuals are negatively auto-correlated 

• The lower and upper bounds for the Durbin-Watson test statistic are a function of sample size, number 

of predictor variables, and the desired confidence level. 

• The Northwest Industrial SEM Collaborative has provided a paper pertaining to autocorrelation in 

regression-based energy models for industrial facilities.14 

• Residual plots that may be of value include: 

o Residuals versus time (e.g. Figure 9) 

o Residuals versus the independent variables (confirmation of homoscedastic or 

heteroscedastic residuals) 

o Histogram of residuals (supports Net Determination Bias) 

3.3 Modifying the Hypothesis 

• If the statistical tests outlined in 3.1 and 3.2 indicate insufficient fitness of the model, modify the 

model hypothesis. This process might include modifications to the assumed energy drivers, time 

intervals, change points, or the order of relationships (second order, square root, etc.). 

                                                           

14  Tools and Methods for Addressing Autocorrelation in Energy Modeling. NW Industrial Strategic Energy Management 

(SEM) Collaborative. 2013. 



M T & R  G U I D E L I N E S  R E V  7 . 0  

October 2018    16 

• If the measurement boundary is supplied by multiple meters, disaggregating the meters may result in 

better model resolution. 

• In forming an alternative hypothesis, confirm that the characteristics of the equation remains aligned 

with the mechanics of the process, and that the baseline data set meets the standards outlined in 

Section 2.1. This information should be documented in a competing model summary. An example of a 

competing model summary is provided in Appendix F. 

3.4 Screening for Residual Outliers 

• Outliers from the residual analysis should be flagged for review. One approach for reviewing outliers is 

applying a common rule of thumb for identifying data that lie outside the range of ±4σ, as illustrated in 

Figure 10.15 The probability that a residual will exceed ±4σ due to random chance is small. Applying a 

range of ±4σ eliminates unnecessary flagging of residuals, while identifying those residuals that need 

further review.  

 

Figure 10. Inspection of residual outliers. 

• Before removing outliers, the modeler should review any residuals outside the control limits with the 

Energy Champion to understand the cause of the anomaly. 

• The modeler must provide a supporting explanation when removing statistical outliers. 

3.5 Alternatives to Regression-based Forecasting 

The adoption of a methodology that does not use a standard regression-based forecasting energy model 

may be necessary under certain conditions. 

3.5.1 Backcast Approach 

For the backcast approach, the regression energy model is developed from the data obtained 

during the reporting period. This method is applicable in instances where the resolution of the 

                                                           

15  Neter, J., W. Wasserman. 1974. Applied Linear Statistical Models. Irwin Publishers, Homewood, Illinois. p 106. 
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energy data for the original baseline was relatively poor (e.g., monthly) and the resolution of the 

energy data during the reporting period has significantly improved.  

For more details, see the Superior Energy Performance Measurement and Verification Protocol for 

Industry (SEP Protocol).16 

3.5.2 Mean Model  

The mean model represents the simplest form of forecasting, and may be necessary when: 

▪ There is insufficient variation in the independent energy drivers (e.g., production is 

constant) such that there is also insufficient variation in the corresponding energy 

variable, or 

▪ There is insufficient correlation between suspected energy drivers and energy. 

For the mean model approach, the estimate of baseline energy use is the average energy use: 

Baseline energy per interval = Average annual energy consumption for baseline period 

This approach requires that baseline operating conditions be thoroughly documented so that 

changes in energy intensity observed during the reporting period can be properly assigned to EEMs 

directed at energy efficiency versus other changes in plant operation. 

This approach is valid provided the relevant operational parameters remain within a defined range. 

An acceptable guideline for this tolerance is ± 3σ of values recorded in the baseline period. For 

more details, see the SEP Protocol.17 

3.5.3 Pre-Post 

For this method, a regression model is constructed using data from both the baseline and reporting 

period. Generally, a single indicator variable is used to estimate the difference in energy use 

between the two time periods, though interactive effects between energy drivers can be modeled. 

For more details, see the Industrial Strategic Energy Management (SEM) Impact Evaluation 

Report.18 

3.6 Energy Model Report and EPT Review 

The model and supporting statistics and graphics should be documented in the Energy Model Report. The 

EPT team will provide final approval after a review by the utility and end user.  

4. Calculating Energy Savings During the Reporting Period 

4.1 Maintaining Records of Events and Changes 

• The savings calculated in Sections 4.3 and 4.4 represent the total (gross) energy savings for the site. 

In order to establish attribution, it is critical that the Energy Champion maintain accurate records of 

key operations and maintenance (O&M) actions or behavior-based improvements. Records of facility 

operations that influence energy use, including key process variables, should also be maintained. The 

Energy Champion should attempt to correlate inflections in the cumulative sum of differences 

(CUSUM) graph to these actions or changes. 

                                                           

16  The Regents of the University of California, Section 3.4.12, p.12. 
17  The Regents of the University of California, Section 3.4.6, p.11. 
18  Industrial Strategic Energy Management (SEM) Impact Evaluation Report. SBW Consulting, Inc. and The Cadmus 

Group. 2017. Appendix B., p. 61. 
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• Any effects from fuel switching must be accounted for and excluded from the gross MT&R savings. If 

fuel switching is a possibility, it is advisable to maintain records of alternate fuel sources crossing the 

measurement boundary beginning with the baseline period. These records can be used to document 

that fuel switching did not occur during the reporting period. 

4.2 Adjusting for Concurrent Incentivized Projects 

• If the end user is participating in other ESI program offerings, gross energy savings adjustments will 

likely be needed to net out savings from EEMs incentivized by other ESI components. The typical 

approach is an adjustment to the gross savings by the utility-approved M&V savings value associated 

with the project, prorated from the M&V start date to the end of the reporting period. 

• Appendix B outlines the options for determining the value of the adjustment and identifying a suitable 

date of application. 

4.3 Calculation of Savings Using Regression Model 

• As data is collected during the reporting period, it should be methodically reviewed to detect 

anomalous values and to ensure that the independent variables fall within the ranges specified for the 

model. For models with a single mode of operation, the generally acceptable values for each variable 

will be the maximum of ±3σ or the range used in the model, as outlined in the SEP Protocol.19 When 

the model includes multiple modes of operation, ±10% of the actual range is generally the most 

appropriate method. 

• Energy savings can be calculated by applying the following equation: 

 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑎𝑣𝑖𝑛𝑔𝑠 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦 𝑈𝑠𝑒 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝑈𝑠𝑒 ± 𝑁𝑜𝑛– 𝑅𝑜𝑢𝑡𝑖𝑛𝑒 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝑠 

• For periods with infrequent occurrences of out-of-range variables, the magnitude of energy savings 

should be reviewed. Generally, no further adjustments are needed if energy savings are similar to the 

other observations within the ranges specified by the model. 

• When variables exceed the valid range of the model, capping production variables may be necessary 

to avoid overestimating energy savings. If capping is applied, all values must be capped consistently.  

• If an acceptable capping limit cannot be determined, an expected value of energy savings may be 

provided. If an expected value cannot be determined, then energy savings for these occurrences 

should be excluded.  

• Occurrences of abnormal energy savings, i.e., exceeding ± 4σ, should be reviewed. Plant operations 

can be reviewed with the Energy Champion if further questions persist upon reviewing the data. The 

expected or average value of savings can be used for these anomalous observations. 

• The CUSUM calculation is an effective means of quantifying the total energy savings benefit. In 

graphical form, the CUSUM provides a powerful illustration of the total savings achieved during a 

specified reporting period. However, the CUSUM graph should be used in conjunction with a time 

series plot of energy and the independent variables. Together, these graphs help establish an 

informed understanding of energy intensity inflections. An example of a CUSUM graph is shown in 

Figure 11. 

                                                           

19  The Regents of the University of California, Section 3.4.6, p.12. 
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Figure 11. CUSUM graph example. 

4.4 Calculation of Savings Using Alternative Approaches 

4.4.1 Savings Calculation by Backcast Approach 

When using the backcast approach, separate energy models are created for each reporting period. 

Each respective model estimates energy use during the baseline period using the weather and 

production observed during the baseline period. A timeline for the back-casting procedure is 

illustrated in Figure 12. 

 

Figure 12. Backcast approach. 
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To calculate energy savings for Year 1, first an energy model is created using actual energy, 

weather, and production data from Year 1. This model is then used to predict energy use during the 

baseline period based on weather and production data reported during that same baseline period. 

Finally, savings are calculated using the actual energy use during the baseline period and the 

energy use predicted for the baseline period using the Year 1 model. 

Thus, energy savings for the Year 1 reporting period are calculated as: 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑎𝑣𝑖𝑛𝑔𝑠𝑌𝑒𝑎𝑟 1

= (𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝑈𝑠𝑒)𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒

−  (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦 𝑈𝑠𝑒, 𝑌𝑒𝑎𝑟 1 𝑀𝑜𝑑𝑒𝑙)𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒

±  𝑁𝑜𝑛– 𝑅𝑜𝑢𝑡𝑖𝑛𝑒 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝑠 

 

Likewise, the energy savings for the Year 2 reporting period are based on the model created using 

energy use, weather, and production data from Year 2 and the energy use, weather, and 

production reported during the baseline. Energy savings for the Year 2 reporting period are 

calculated as: 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑎𝑣𝑖𝑛𝑔𝑠𝑌𝑒𝑎𝑟 2

= (𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝑈𝑠𝑒)𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒

−  (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦 𝑈𝑠𝑒, 𝑌𝑒𝑎𝑟 2 𝑀𝑜𝑑𝑒𝑙)𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒

±  𝑁𝑜𝑛– 𝑅𝑜𝑢𝑡𝑖𝑛𝑒 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝑠 

 

4.4.2 Savings Calculation by Mean Model 

For a mean model, baseline energy is calculated as the mean or average energy use during the 

baseline period. For a given time interval, energy savings are then calculated as the difference 

between the mean value from the baseline period and the actual energy use for that time interval, 

plus or minus any adjustments. 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑎𝑣𝑖𝑛𝑔𝑠 = 𝑀𝑒𝑎𝑛 (𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝑈𝑠𝑒)𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − (𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝑈𝑠𝑒)𝑅𝑒𝑝𝑜𝑟𝑡𝑖𝑛𝑔

± 𝑁𝑜𝑛– 𝑅𝑜𝑢𝑡𝑖𝑛𝑒 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝑠 

4.4.3 Savings Calculation by Pre-Post Approach 

For models with a single indicator variable, the savings estimate per time interval is the estimated 

coefficient of the indicator variable. The Industrial Strategic Energy Management (SEM) Impact 

Evaluation Report provides more details for calculating energy savings when the indicator variable 

(for the reporting period) is included as an interaction term with other model variables.20  

4.4.4 Savings Calculation by Bottom-up Approach 

Quantification of energy savings using a bottom-up approach consists of engineering calculations 

supported by short-term data logging. The application of this approach is limited to specific cases 

when top-down, whole-facility energy modeling efforts are unsuccessful. This approach may also be 

used for comparison purposes. Further information regarding the application of engineering 

calculations including determination of the baseline, calculations of energy savings, and required 

                                                           

20  SBW Consulting, Inc. and The Cadmus Group, Appendix B, p. 73. 
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project documentation is provided in BPA’s Engineering Calculations with Verification (ECwV) 

Protocol.21 

4.5 Options for Establishing Statistical Confidence of Savings Value 

4.5.1 Uncertainty in the Forecasting Estimate 

In certain instances, it may be necessary to specify a range of energy savings performance for a 

defined statistical confidence level. 

ASHRAE provides a detailed description of uncertainty analysis.22 The following methodology 

provides an approach for calculating uncertainty derived from model error. This method is a 

simplified version of the uncertainty analysis provided in the Industrial Strategic Energy 

Management (SEM) Impact Evaluation Report.23 It should be noted that this approach does not 

capture error associated with measurement hardware. In most cases, the measurement error 

component should be small relative to the regression model error. 

The fractional savings uncertainty (FSU) for the majority of ESI MT&R models can be estimated by 

the following equation: 

𝐹𝑆𝑈 = 1.26𝑡 ×
𝐶𝑉 [(

𝑛
𝑛′) (1 +

2
𝑛′

) (
1
𝑚

)]

1
2

𝐹
 

Where: 

𝑡 =  t-statistic for desired confidence level 

𝐶𝑉 = coefficient of variation 

𝑛 = number of observations in the baseline period 

𝑚 = number of observations in the reporting period 

𝐹 = fractional savings 

 

The effective number of observations in the baseline period, 𝑛′, after accounting for auto 

correlation is:  

𝑛′ = 𝑛
(1 − 𝜌)

(1 + 𝜌)
 

Where: 

𝜌 =  auto-correlation coefficient 

While the preceding methodology is generally applied to analyze savings uncertainty in an ex-post 

analysis, this analysis can be used to inform the model development, particularly when the model 

developer is faced with multiple options related to time interval or variable selection. 

                                                           

21  Engineering Calculations with Verification Protocol, Version 1.0. Bonneville Power Administration. 2012. www.bpa.gov/ 

EE/Policy/IManual/Documents/July%20documents/6_BPA_MV_ECwV_Protocol_May2012_FINAL.pdf.  
22  ASHRAE, Annex B. 
23  SBW Consulting, Inc. and The Cadmus Group, Appendix B, p. 75. 

http://www.bpa.gov/%20EE/Policy/IManual/Documents/July%20documents/6_BPA_MV_ECwV_Protocol_May2012_FINAL.pdf
http://www.bpa.gov/%20EE/Policy/IManual/Documents/July%20documents/6_BPA_MV_ECwV_Protocol_May2012_FINAL.pdf
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4.5.2 Statistical Confidence for Backcast Method 

The FSU equation can also be used to estimate savings uncertainty for the backcast method. When 

using the FSU equation, the model statistics and “baseline” observations (n) occur during the 

reporting period of the project. Likewise, the number of observations during the “reporting” period 

(m) occur during the baseline period of the project.  

4.5.3 Statistical Confidence for Mean Model 

When applying the mean model approach, two-sided t-tests are performed on energy use and 

assumed energy drivers prior to reporting energy savings. The t-test should demonstrate that the 

energy use of the reporting period is less than the baseline period. It must be shown that assumed 

energy drivers did not influence energy savings. T-tests or other methods may be used to 

demonstrate this. All t-tests should be performed at the 80% level of confidence using methods for 

equal or unequal variances as appropriate for the samples under study.  

4.5.4 Statistical Confidence for Pre-Post 

When using the pre-post method, the indicator variable’s standard error is used to determine the 

uncertainty of the savings estimate. For a desired level of confidence, the t-stat or p-value can be 

used to determine the confidence in the savings estimates.  

4.6 EPT Review and Approval 

The savings calculation methodology and verified savings value will be documented in the SEM Completion 

Report. The EPT team will provide final sign-off, but BPA’s Energy Management Engineering COTR (E-COTR) 

will provide final authorization of the savings and incentive. 

5. Making Non-Routine Adjustments 

5.1 Scenarios for Model Reassessment 

• The model is considered valid for the range of the independent variables observed during the baseline 

period, provided the general operation and qualitative factors of the facility or system remain constant 

throughout the reporting periods. The SEP Protocol provides an additional provision that validates the 

model if the independent variable is within ±3σ from the mean of the baseline data set.24 

• Non-programmatic effects may occur during the reporting period. Such scenarios would trigger a 

reassessment of the energy model. These scenarios can be characterized into three different 

categories of increasing complexity:  

5.1.1 Static Change Assessment 

A static change is a change in electric load within a well-defined boundary and with minimal 

interactive effects. Examples of a static change are: 

o Addition of a new exhaust fan for safety/environmental purposes 

o Added section of the facility in which the energy flows can be easily isolated  

                                                           

24  The Regents of the University of California, Section 3.4.6, p.11. 



M T & R  G U I D E L I N E S  R E V  7 . 0  

October 2018    23 

5.1.2 Minor Process Change Assessment   

A minor process change is a distinct change in operations that does not fundamentally change the 

process itself. These changes generally impact one or just a few production or process variables. 

Examples of a minor process change are: 

o Change in business operations that requires a new independent variable (e.g., new product 

type) 

o Change in the operating pressure of a sub-system within the plant 

5.1.3 Major Process Change Assessment   

A major process change affects the fundamental energy consumption characteristics of the facility, 

rendering the original model specification invalid. These changes may impact many systems within 

the plant. Examples of a major process change are: 

o A sustained increase or decrease in the observed level of an independent variable outside the 

range for which the baseline model was established. 

o A change in plant operations from batch-type to continuous 

5.2 Options for Baseline Adjustment 

Baseline adjustments should reflect the scenario encountered.  

5.2.1 Static Change Adjustment 

The change in electrical load should be accounted for based on sub-metered data and 

accompanying analysis. 

o For constant loads, annual energy use can often be extrapolated using short-term (e.g. two 

weeks’) data logging. 

o For variable loads, long-term or permanent submetering is preferred. Where long-term 

submetering is not feasible, empirical models can be developed that correlate energy use 

from these loads to weather, production and/or process variables. 

o For relatively small static changes, engineering calculations supported with motor nameplate 

information may be acceptable. 

5.2.2 Minor Process Change Adjustment 

To account for a minor process change, a regression approach is generally preferred. The model 

must include sufficient data before and after the change to accurately estimate the impact of this 

change. Production or process data is required for documentation of when this change occurred.  

o When the change is an added product, a regression model, including the added product, can 

be used to estimate the change in energy use for this product. Generally, the other variables 

are the same variables used in the energy model. The estimated coefficient of the new 

variable can then be added to the energy model. 

o When a change in sub-system operation occurs, a regression model with an indicator variable 

can be evaluated. Again, the other variables are the same variables used in the energy model 

and the indicator variable is set to one when the change occurs. The estimated coefficient of 

the indicator variable can then be added to the energy model. 

o When the regression model is not a suitable approach, estimates of the change may be made 

based on engineering calculations or published data. 
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5.2.3 Major Process Change Adjustment 

Like minor process changes, a regression approach is preferred. 

o When the process itself has fundamentally changed, creating a new regression model or re-

baselining may be necessary. Consideration of the implementation dates of the EEMs need to 

be considered when changing the time period of the model. 

o When independent variables are frequently outside the acceptable limits of the model, a new 

regression model may be required. The SEP Protocol provides a “chaining adjustment” 

methodology to model these situations.25 

o Other options for dealing with a major process change include a pre-post or bottom-up 

approach.  

5.3 Guidelines for Modification of Regression Model 

When revising the baseline model is necessary, the revised baseline period must adequately capture the 

new range of operating conditions, including seasonal cycles (if applicable). Until a new model can be 

established, SEM savings incentives would typically be put on hold but the accumulated savings that 

preceded the retrofit would be considered based on engineering calculations with verification. 

5.4 EPT Approval 

When a baseline model must be adjusted, the proposed adjustment should be reviewed and approved by 

the EPT team in advance of any modeling work.  

6. Projecting Energy Savings from a Condensed Performance Period 

The following section outlines four methods to project annual energy savings if less than a year of data is 

available during the performance period. Under the current SEM program, this method would seldom be 

applicable. However, in the case of meter failure or other unforeseen circumstances, these methods, which 

were developed and tested for Track and Tune projects commencing prior to October 1, 2015, may be 

applicable. The projected Year 1 energy savings are based on the achieved energy savings obtained during the 

performance period, which is typically 90 days. 

For each of these methods, it is essential that the following factors are taken into account: 

o The number of valid observations during the performance period. 

o The expected number of valid observations during the remainder of Year 1. 

o The expected distribution of the energy drivers during the remainder of Year 1 relative to the 

distribution of the energy drivers during the performance period. 

o Engineering and program Judgment on the likelihood of savings to persist. 

6.1 Direct Percentage Basis 

When the distribution of the energy drivers is expected to be the same for the remainder of Year 1, Year 1 

energy savings can be projected by extrapolating percent energy savings from the performance period. 

                                                           

25  The Regents of the University of California, Section 3.6.5, p.17. 
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6.2 Percentage Basis with Forecast of Energy Drivers 

When the distribution of energy drivers is expected to be different for the remainder of Year 1, the 

distribution of energy drivers must be considered when projecting Year 1 energy savings. For example, if 

during the performance period, energy savings were only obtained when production was low, then the 

expected distribution of production should be used to project Year 1 energy savings. If production is 

expected to be high for the majority of Year 1, it would be incorrect to project Year 1 savings based on 

savings achieved during the performance period when production was low. 

6.3 Normalized Annual Consumption 

• This method can be used in lieu of the “Percentage Basis with Forecast of Energy Drivers” method 

described above (Section 6.2). This method requires the development of a second regression model 

for the performance period. The total derivative of the baseline energy equation is taken to develop a 

governing equation. The inputs for the governing equation are the coefficients from the baseline and 

performance period models, as well as the projected distribution of energy drivers. TMY3 weather data 

is typically used for weather dependent energy drivers and the best estimate of Year 1 production is 

used for production energy drivers. 

• This modeling approach provides a disaggregation of energy savings by energy drivers, which provides 

transparency for how energy savings were achieved. 

• The weaknesses of this approach are that it requires additional calculation steps and that the energy 

signature of the baseline and performance periods must be the same. 

• This method is similar to the Standard Condition Adjustment Model defined by SEP.26 

6.4 Pre-Post 

• This method can be used in lieu of the “Direct Percentage Basis” method described in Section 6.1. 

This method was used by Cadmus for the 2012 and 2017 Energy Management Impact Evaluation, 

and follows a methodology described by Luneski (2011).27 This method entails developing a new 

regression model using an indicator variable to differentiate the baseline and performance period 

data. The value of the indicator variable represents the energy savings. 

• This modeling approach does not normalize the savings value for annual weather or production and 

thus it should not be used when the distribution of the energy drivers is expected to be significantly 

different for the remainder of Year 1. 

  

                                                           

26   The Regents of the University of California, Section 6.2.3, p.19. 

27  Luneski, R.D. 2011. A Generalized Method for Estimation of Industrial Energy Savings from Capital and Behavior 

Programs. Industrial Energy Analysis. 
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Appendix A – Treatment of EEMs During the Baseline Period 

DESCRIPTION (IN ORDER OF PREFERENCE) GUIDELINES MERITS DEMERITS 

Standard Approach 

Select a baseline period without capital projects and 

immediately prior to the reporting period. 

𝒚 (
𝒌𝑾𝒉

𝒑𝒆𝒓𝒊𝒐𝒅
) = 𝜷𝟎 + 𝜷𝟏𝒙𝟏 + 𝜷𝒊𝒙𝒊 

• Verify absence of utility-

incentivized EEMs by 

interviewing facility and 

speaking to serving utility. 

• Confirm energy intensity profile 

is consistent over the selected 

period. 

• Incorporates the full data set 

in the baseline model. 

• Requires no manipulation of 

data. 

• Requires no adjustments 

during reporting period. 

• No obvious demerits, provided 

energy intensity profile is consistent 

throughout baseline period. 

Year-End MT&R Adjustment 
Choose a baseline period immediately prior to the first capital 

project. Subtract M&V savings from year-end MT&R savings. 

𝒚 (
𝒌𝑾𝒉

𝒑𝒆𝒓𝒊𝒐𝒅
) = 𝜷𝟎 + 𝜷𝟏𝒙𝟏 + 𝜷𝒊𝒙𝒊 + (𝑰𝑽 = 𝟎, 𝟏)𝑲(𝑴&𝑽)𝑲 

• Maximum exclusion period = 12 

months. 

• Exclusion period must have a 

consistent energy profile, aside 

from the EEM(s). 

• Provides direct reconciliation 

with EEM M&V value. 

• Requires no adjustment of 

baseline data set. 

• Data immediately preceding 

reporting period is excluded. 

• M&V adjustment must be 

performed throughout reporting 

period. 

Pre-EEM Baseline Normalization by M&V Value 

Adjust the pre-EEM baseline values by the EEM M&V value. 

 

𝒚 (
𝒌𝑾𝒉

𝒑𝒆𝒓𝒊𝒐𝒅
) = 𝜷𝟎 + 𝜷𝟏𝒙𝟏 + 𝜷𝒊𝒙𝒊 

• EEM completion report must be 

reviewed and included as 

attachment. 

• Interactive effects described in 

project report must be factored 

in to baseline adjustment. 

• Provides direct reconciliation 

with M&V value. 

• Enables use of the entire 

baseline data set. 

• CUSUM for reporting period 

starts at zero. 

• Requires adjustment to baseline 

data set (IPMVP does not prohibit). 

• Accurately incorporating interactive 

effects is challenging and labor 

intensive. 

Baseline Normalization by Factored Indicator Variable 
Apply an indicator variable in the baseline data set, 

representing the implementation of an EEM. The indicator 

variable may or may not be factored with one or more primary 

independent variables to account for interactive effects. 

𝒚 (
𝒌𝑾𝒉

𝒑𝒆𝒓𝒊𝒐𝒅
) = 𝜷𝟎 + 𝜷𝟏𝒙𝟏 + 𝜷𝒊𝒙𝒊 + 𝜷’(𝑰𝑽 = 𝟎, 𝟏)𝒙’ 

• Factored indicator variable will 

add to the number of points 

required in the baseline data set 

(n × 6). 

• Allows regression model to 

solve for interactive effects of 

EEM with other energy drivers. 

• Yields the highest R². 

• No reconciliation with EEM’s M&V 

value. 

• If backsliding occurred on the EEM, 

program component would pick up 

any recapturing of the original 

savings. 

Indicator Variable Representation of Non-Incentivized EEM 
To prevent incentivizing a previously implemented non-

incentivized EEM by program component, apply an indicator 

variable representing implementation of the EEM then solve 

for the coefficient. 

𝒚 (
𝒌𝑾𝒉

𝒑𝒆𝒓𝒊𝒐𝒅
) = 𝜷𝟎 + 𝜷𝟏𝒙𝟏 + 𝜷𝒊𝒙𝒊 + 𝜷’(𝑰𝑽 = 𝟎, 𝟏)𝒙’ 

*Describes an independent scenario 

• Non-incentivized EEMs 

implemented during baseline 

period should be accurately 

reflected in baseline model. 

• Prevents “free-rider” EEMs 

from inflating the savings 

associated with program 

component. 

• Allows use of the entire 

baseline data set. 

• The quantification of the savings 

associated with the EEM is limited 

to the precision of the model. 
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Appendix B – Treatment of Incentivized EEMs Installed During the Reporting Period 

PROJECT 

INSTALLED 

SAVINGS OBSERVED 

IN CUSUM? 
M&V STATUS 

PRORATING METHOD 

START DATE SAVINGS VALUE 

No or 

Incomplete 
n/a n/a n/a n/a 

Yes 

No 

Not started n/a n/a 

In progress Use the actual project M&V start date. 
Wait for M&V to be completed (if an early estimate is 

needed, solve for value in CUSUM). 

Completed Use the actual project M&V start date. Use site savings M&V value. 

Yes 

Not started 

Based on CUSUM inflection and ideally supported by 

email from ESIP (e.g., equipment was commissioned 

on xx/xx date). 

Option A. Solve for savings value using indicator 

variable during reporting period. 

Option B. Use estimated site savings from custom 

project proposal. 

Option C. If the savings value from A and B differ 

significantly, confer with EPT team. 

In progress 

Option A. Based on CUSUM inflection, and ideally 

supported by email from ESIP.  
Wait for M&V to complete (if an early estimate is 

needed, solve for value). 
Option B. At the latest, use Actual Project M&V Start 

Date. 

Completed 

Option A. Based on CUSUM inflection and ideally 

supported by email from ESIP. 
Use site savings M&V value. 

Option B. At the latest, use Actual Project M&V Start 

Date. 
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Appendix C – Overview of Regression Output 

 

Figure C-1. Regression output from “R” open source statistical software. 

 

Figure C-2. Regression output from Microsoft Excel. 



M T & R  G U I D E L I N E S  R E V  7 . 0  

October 2018 D 

Appendix D – Glossary of Terms 

The definitions below address terms used within the body of this document, presented in the context of ESI’s 

MT&R procedure. For a more comprehensive overview of statistical terms related to measurement and 

verification, please refer to BPA’s Glossary for M&V: Reference Guide.28 

1. Adjusted R2: A measure of the total variation accounted for in the model that penalizes for the number of 

parameters used in the model.  

2. Autocorrelation Coefficient: A measure of the correlation of a time series with its past and future values 

(also referred to as serial correlation). In a time series plot of residuals, autocorrelation is characterized by 

a tendency for the bias in data point n to be a predictor of a similar bias in data point n + 1. The 

autocorrelation coefficient can be calculated by performing regression on two identical data sets, offset by 

one unit of time. The square root of the resulting coefficient of determination is the autocorrelation 

coefficient (ρ) for the data set. 

Auto-correlation can also be calculated from the residuals, e, from the following equation: 

 𝜌 =   
∑ 𝑒𝑡  𝑒𝑡−1   

𝑛
𝑡=2

∑ 𝑒𝑡
2𝑛

𝑡=1
 

3. Change-Point Model: A model in which the relationship of a dependent variable is discontinuous with 

respect to an independent variable. The change-point is the value of the independent variable at which 

this discontinuity occurs. In the context of industrial energy efficiency, a common scenario arises when the 

energy intensity of a building or system changes at a specific ambient temperature, at which the HVAC 

system switches from heating mode to cooling mode. 

4. Coefficient of Determination (R²): Statistically, the proportion of the total variation in the dependent 

variable that is explained by the regression equation. Mathematically, defined as  

𝑅2 =
∑(�̂�𝑖−𝑌)

2

∑(𝑌𝑖−𝑌)
2, 

where, 

• �̂�𝑖 = the predicted energy value for a particular data point using the measured value of the 

independent variable. 

• 𝑌 = mean of the n measured energy values, 𝑌 =
∑ 𝑌𝑖

𝑛
. 

• 𝑌𝑖 = actual observed value of the dependent variable. 

 

5. Coefficient of Variation (CV RMSE): The CV is calculated as the ratio of the root mean squared error (RMSE) 

to the mean of the dependent variable (energy). CV is a dimensionless value, and the ratio is typically 

multiplied by 100 and given as a percentage. CV aims to describe the model fit in terms of the relative 

sizes of the squared residuals. CV evaluates the relative closeness of the predictions of the actual values 

(the uncertainty of the model), while R² evaluates how much of the variability in the actual values is 

explained by the model.  

 

                                                           

28  Bonneville Power Administration’s Glossary for M&V: Reference Guide, Version 1.1. Bonneville Power Administration. 

May 2012. 
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𝐶𝑉 (𝑅𝑀𝑆𝐸) =

√(
∑(�̂�𝑖 − 𝑦𝑖)2

(𝑛 − 𝑝)
)

𝑦
 ×  100 

6. Cooling Degree Days (CDD): A measure of how many degrees the outside air temperature (Toa) is above the 

balance point (Tbal) over the course of a day. The units CDD are ºF · days. When using average values of Toa, 

CDD can be calculated as:  

CDD(𝑇𝑏𝑎𝑙) = 1day x ∑ (𝑇𝑜𝑎 , 𝑛 − 𝑇𝑏𝑎𝑙) +

𝑑𝑎𝑦𝑠

𝑛=1

29 

Note that different time intervals can lead to different values for degree-days. A source for degree days is: 

www.degreedays.net. 

7. Data Champion: This person, assigned by the end user, is the point of contact for data review and 

collection. This person may be the Energy Champion or report to the Energy Champion. 

8. Energy Champion: This person, assigned by the end user, determines potential energy efficiency projects 

and tracking techniques. 

9. Energy Efficiency Measure (EEM): Equipment and/or actions taken to reduce electrical energy use.  

10. Fractional Savings Uncertainty (FSU): The calculated uncertainty in the total savings over m time periods 

divided by the total savings over the same time period, where uncertainty is measured as the quantity of 

savings from the upper confidence limit to the lower confidence limit surrounding a savings estimate. 

11. Heteroscedasticity: In contrast to homoscedasticity, this occurs when error (or residual) variance is not 

constant throughout the observations e.g., when the residual variance is shown to increase or decrease 

with the value of an independent variable. 

12. Heating Degree Days (HDD): A measure of how many degrees the outside air temperature (Toa) is below the 

balance point (Tbal) over the course of a day. The units HDD are ºF · days. When using average values of Toa, 

HDD can be calculated as:  

HDD(𝑇𝑏𝑎𝑙) = 1day x ∑ (𝑇𝑏𝑎𝑙 − 𝑇𝑜𝑎 , 𝑛) +

𝑑𝑎𝑦𝑠

𝑛=1

30 

Note that different time intervals can lead to different values for degree-days. A source for degree days is: 

www.degreedays.net. 

13. Homoscedasticity: Homoscedasticity generally means that all data in a model have similar variance over 

the modeling period. Within linear regression, this means that the variance around the regression line is 

similar for all values of the dependent variables.  

 

                                                           

29   Kreider, Curtiss, Rabl. 2002. Heating and Cooling of Buildings, Second Edition. McGraw Hill. p. 381. 
30  ibid, p. 379. 
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14. Indicator Variable: (Also referred to a categorical variable.) A variable used to account for discrete levels of 

a qualitative variable. Generally, indicator variables are assigned a value of 0 or 1 to account for different 

modes of operations, and a qualitative variable with r levels can be modeled with r – 1 indicator variables.  

15. International Measurement and Verification Protocol (IPMVP): The IPMVP provides an overview of current 

best practice techniques for verifying results of energy efficiency, water efficiency, and renewable energy 

projects in commercial and industrial facilities. It may also be used by facility operators to assess and 

improve facility performance. The IPMVP is the leading international standard in Measurement and 

Verification protocols.31 

16. Measurement and Verification (M&V): The process of planning, measuring, collecting and analyzing data 

for the purpose of verifying and reporting savings within an individual facility resulting from the 

implementation of EEMs.32 

17. Measurement Boundary: A notional boundary drawn around equipment and/or systems to segregate those 

which are relevant to savings determination from those which are not. All energy uses of equipment or 

systems within the measurement boundary must be measured or estimated, whether the energy uses are 

within the boundary or not. 

18. Mean Model: (Also referred to as a single parameter model.) A model that estimates the mean of the 

dependent variable. 

19. Monitoring, Tracking, and Reporting (MT&R): MT&R refers to the measurement systems, statistical tools, 

and business practices associated with measuring energy intensity, establishing targets for improvement, 

and reporting results and impacts. MT&R has many similarities to the Plan-Do-Check-Act (PDCA) 

methodology that is central to several widely adopted business performance standards. 

20. Multicollinearity: A phenomenon in which two or more independent variables in a multiple regression 

model are correlated. 

21. Net Determination Bias Error (NDB or NBE): A statistical metric that quantifies the tendency of a model to 

underestimate or overestimate savings. Typically represented as a percentage. Note that if regression is 

performed properly, net determination bias should be zero. A positive value indicates a tendency of the 

model to overestimate savings. NDB is calculated as: 

𝑁𝐷𝐵 =
∑(𝑌𝑖−�̂�𝑖)

∑ 𝑌𝑖
× 100  

22. Non-programmatic Effects: Factors that did not occur during the baseline period and are outside the 

influence of the program. 

23. Regression Model: A mathematical model based on statistical analysis where the dependent variable is 

regressed on the independent variables which are said to determine its value. In so doing, the relationship 

between the variables is estimated statistically from the source data. 

                                                           

31  Efficiency Evaluation Organization. 
32  Ibid. 
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24. Strategic Energy Management (SEM): The application of the business principles of continuous 

improvement to drive systematic, long-term reductions in the energy intensity of a system, facility, or 

organization. 

25. Tune-up: A major on-site technical effort, led by a tune-up engineer, which may result in immediate 

operational changes and a prioritized list of low-cost/no-cost action items. 
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Appendix E – Models with Irregular Time Intervals 

When developing an energy model based on data of varying intervals, time intervals must be accounted for in 

the regression analysis or the model will be biased. This is accomplished by first converting the data for each 

observation of the independent and response variables to average values. Then all dependent and 

independent variables need to be weighted by the number of intervals in the billing period. This can be 

accomplished by using weighted regression analysis, or duplicating each observation by the number of time 

intervals in the billing period. 

Energy models with irregular time intervals occur most often when developing energy models with monthly 

utility bills. Consider, for example, the case when the billing period for each utility bill is different. When 

developing the energy model, the model must account for this irregular time interval to eliminate bias from the 

varying time periods. Table E-1. shows the data per billing period and the daily average values for this data. 

Note that because Tdb was already provided as an average value, this value is the same for both the billing 

period and the daily average. 

Table E-1. Example data set for weighted regression 

 

After the average values per interval are obtained, in this case daily average values, the analysis can be 

performed by using weighted regression or duplicating each observation by the corresponding number of time 

intervals for each observation. When using weighted regression, the weights, 𝑊, correspond to the number of 

time intervals per observation. For this example, the diagonal matrix 𝑊𝑖𝑖 would be: 

𝑊𝑖𝑖 = [27, 29, 28, 29, 28, 39, 29, 29, 33, 30, 24, 38] 

 

 

Billing 

Period Days/Billing 

Period

Electricity 

Use 

(kWh/Billing 

Period)

Avg. Tdb 

(°F/Billing 

Period)

Production 

(lbs/Billing 

Period)

Electricity 

Use 

(kWh/dy)

Avg. Tdb 

(°F/dy)
Avg. 

Production 

(lbs/dy)

Jan 27 227,772 39.0 2,649 8,436 39.0 98.1

Feb 29 246,471 39.7 2,448 8,499 39.7 84.4

Mar 28 142,072 42.1 2,335 5,074 42.1 83.4

Apr 29 172,318 48.2 1,891 5,942 48.2 65.2

May 28 123,368 52.5 1,229 4,406 52.5 43.9

Jun 39 126,945 61.3 1,685 3,255 61.3 43.2

Jul 29 101,529 66.8 1,595 3,501 66.8 55.0

Aug 29 133,429 67.4 2,042 4,601 67.4 70.4

Sep 33 150,975 63.5 2,290 4,575 63.5 69.4

Oct 30 144,720 52.7 2,112 4,824 52.7 70.4

Nov 24 140,880 47.5 1,596 5,870 47.5 66.5

Dec 38 221,502 37.4 1,661 5,829 37.4 43.7

Total/Avg. 363 1,931,981 51.5 1,961 5,401 51.5 66.1

Billing Period Daily Average
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When duplicating observations, each observation of average values is duplicated by the number of time 

intervals for the observation. In this example, the observations for January would be duplicated 27 times; the 

observations for February would be duplicated 29 times, and so forth. A spreadsheet can be used to facilitate 

duplicating observations. 

A weighted regression set is developed to demonstrate how weighted regression is performed by duplicating 

observations as described above. Then both the weighted regression set and the daily average, or ordinary 

least squares regression set, is fit to a three-parameter, multivariable heating model as: 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑈𝑠𝑒 (
𝑘𝑊ℎ

𝑑𝑦
) = 𝛽𝑜 +  𝛽1(𝛽2 − 𝐴𝑣𝑔. 𝐷𝑎𝑖𝑙𝑦 𝑇𝑒𝑚𝑝)+ +  𝛽2(𝐴𝑣𝑔. 𝐷𝑎𝑖𝑙𝑦 𝑆𝑎𝑤 𝐷𝑢𝑠𝑡) 

Table E-2 shows that the regression coefficients calculated using weighted regression are different from the 

ordinary least squares method. 

Table E-2. Coefficient results from weighted and ordinary regression analysis 

 

Table E-3 shows that the sum of the residuals for ordinary regression analysis differs from zero. This difference 

is caused by bias in the model coefficients. The sum of the residuals for weighted regression is nearly zero. 

This difference of -1 is the result of numerical errors in transferring coefficient values from the modeling 

program to the calculation spreadsheet and underscores the necessity of reporting and using coefficients with 

adequate precision. 

Weighted 

(Observations = 363)

Ordinary 

(Observations = 12)

Bo 1,477.6960 1,518.1765

B1 124.4626 125.1822

B2 58.5320 58.5860

B3 42.1438 41.4257
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Table E-3. Comparison of residuals between weighted and ordinary regression analysis 

 
 

Table E-4 shows that ordinary regression analysis results in a net determination bias (NDB) of more than the 

acceptable cut-off criterion of 0.005% given in ASHRAE Guideline 14.33 The weighted regression provides a 

NDB that meets this criterion and could be improved by using more precise estimates of the coefficients. 

Table E-4. Comparison of NDB between weighted and ordinary regression analysis 

 
 

While duplication of observations is a simple method for performing weighted regression, it should be noted 

that it produces artificially high R² values and t-statistics for independent variables. In these cases, ordinary 

regression should be applied for the screening of competing models and the selection of independent 

variables, with weighted regression applied as a final step to dial in the coefficient values on the selected 

model (for the purpose of minimizing NDB). However, a true weighted least-squares regression analysis (i.e., 

one that doesn’t depend on an ordinary least-squares regression of duplicated data) should properly account 

for the diagonal matrix, 𝑊𝑖𝑖, in its R² and t-statistic calculations. In such cases, it is better to screen competing 

models using the weighted regression analysis and statistics. 

                                                           

33  ASHRAE, Annex B. 

Billing        

Period

Electricity 

Use 

(kWh/Billing 

Period)

Predicted 

Electricity 

Use 

(kWh/Billing 

Period)

Residual 

(kWh/Billing 

Period)

Predicted 

Electricity 

Use 

(kWh/Billing 

Period)

Residual 

(kWh/Billing 

Period)

Jan 227,772 217,161 10,611 216,914 10,858

Feb 246,471 213,977 32,494 213,982 32,489

Mar 142,072 197,054 -54,982 197,031 -54,959

Apr 172,318 159,831 12,487 160,059 12,259

May 123,368 114,200 9,168 114,761 8,607

Jun 126,945 128,634 -1,689 129,003 -2,058

Jul 101,529 110,073 -8,544 110,101 -8,572

Aug 133,429 128,894 4,535 128,602 4,827

Sep 150,975 145,282 5,693 144,973 6,002

Oct 144,720 155,115 -10,395 155,141 -10,421

Nov 140,880 135,680 5,200 135,858 5,022

Dec 221,502 226,082 -4,580 227,262 -5,760

Total 1,931,981 1,931,982 -1 1,933,688 -1,707

OrdinaryActual Weighted

Method NDB

Weighted -5.8E-07

Ordinary -8.8E-04
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Appendix F – Summary of Competing Models 

An example summary of competing models is shown below. 

Table F-1. Example of competing model summary 

 
 

  

No. Freq. Period

Days in 

Baseline 

Period

R² Adj. R²
CV-RMSE 

(%)

Auto-corr. 

Coeff.

FSU (5.0% 

savings, 

80% CL)

Net Det. 

Bias
Variables Coefficients T-value Comments

1 Daily 9/1/2014 365 0.871 0.865 5.6% 0.280 19.5% 1.08E-14 Constant 37,340 10.3

to Temp 560 7.5

8/31/2016 Variable 1 1,103 3.7

Variable 2 1,200 7.6

2 Daily 9/1/2014 365 0.882 0.876 5.4% 0.270 18.6% -1.01E-14 Constant 33,288 9.6

to Temp 1,997 9.9

8/31/2016
Change-

point
53

Variable 1 1,003 1.2

Variable 2 1,178 8.5

3 Daily 9/1/2014 365 0.912 0.901 5.1% 0.250 17.5% 3.98E-14 Constant 27,643 6.7

to Temp 1,875 7.9

8/31/2016
Change-

point
53 2.4

Variable 1 978 2.0

Variable 2 1,009 7.3

Variable 1 

x 

Variable 2

0.045 2.9

Linear model with both 

production variables and 

temperature.

Change point model with 

boh production variables.

This model includes both 

a change-point and an 

interaction term for the 

two production variables. 

This model provided the 

best fit and accounts for 

the effects of the 

production lines on each 

other. Final Model. 
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Appendix G – Ranges for Outlier Screening and Variable Limits 

This guideline makes use of both ± 3σ and ± 4σ to detect outliers. In general, ± 3σ is used for independent 

variable screening when a normal distribution of values is expected. When residuals are under review, 

however, a wider range of ± 4σ is generally considered appropriate.34 The probability that all residuals will lie 

within ± 4σ is 99.99%. Residuals that exceed ± 4σ should be reviewed and documented. These are general 

recommendations, and under certain circumstances other ranges may be applicable. 

Below is a summary of where ± 3σ and ± 4σ are generally used, and how sigma is calculated. 

Table G-1. Summary of ± 3σ and ± 4σ  

RANGE APPLICATION ESTIMATE OF σ 

± 3σ 

• Set control limits for review of raw energy and 

energy driver data (Section 2.2). 

• Validate operational parameter values during 

savings period when using mean model (Section 

3.5.2). 

• Validate limits of dependent variables for a single 

mode regression model (Sections 4.3 and 5.1).  

Standard deviation of the 

variable for the baseline 

period. 

± 4σ 
• Baseline model residuals outlier detection (Section 

3.4) 
√MSE  

± 4σ 
• Performance period outlier detection: Performance 

period residuals (Section 4.3). 

Standard deviation of the 

energy savings for the 

respective period.  

 

                                                           

34  Kutner, Nachtsheim, Neter. 2004. Applied Linear Regression Models, Fourth Edition. McGraw Hill. p 108. 
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Appendix H – MT&R Decision Tree 

 



M T & R  G U I D E L I N E S  R E V  7 . 0  

October 2018 N 



M T & R  G U I D E L I N E S  R E V  7 . 0  

October 2018 O 



M T & R  G U I D E L I N E S  R E V  7 . 0  

October 2018 P 

Appendix I – Revision History 

REV 
RELEASE 

DATE 
SECTION CHANGES 

1.0 
Apr 

2010  • New Document 

2.0 
May 

2010  
• Addressed feedback from BPA Planning and CADMUS Group (Document Dated 

April 15, 2010). 

3.0 
Mar 

2012 

General • Incorporated Document Objective, clearly stating ownership by ESI EPT team. 

• Added various appendixes and illustrations, including Glossary of Terms. 

• Added revision history. 

Section 1 • Added a requirement that the effect of ambient temperature should always be 

tested for statistical significance. 

• Clarified requirement for calibration of in-house submeters that don’t match 

revenue meter boundary. 

Section 2 • Clarified strong preference for including even intervals of annual cycles in baseline 

period. 

• Included specific guidelines for adjusting for incentivized or non-incentivized EEMs 

that were installed during the baseline period. 

• Added additional guidance and illustration for outlier removal, and time-series 

adjustments. 

• Included discussion of change-point models. 

• Added a discussion of multicollinearity. 

Section 3 • Added a requirement to assess auto-correlation of the residuals. 

• Added a requirement to calculate Net Determination Bias of the residuals. 

• Added a requirement to calculate adjusted R². 

• Included specific options for “Alternatives to Regression Modeling.” 

Section 4 • Added guidance on adjustments for concurrent incentivized projects during the 

“reporting period.” 

• Added discussion of model uncertainty. 

Section 5 • Added a section that outlines specific options for baseline adjustment. 

4.0 
Sep 

2013 

Section 2.2 • Changed data screening criteria from three standard deviations to four standard 

deviations. 

• Changed reference for data screening. 

• Eliminated graph in Figure 1. 

Section 2.4 • Adding clarifying language for multicollinearity. 

• Added reference for multicollinearity. 

Section 3.2 • Replaced Figure 6 with new figure. 

• Added Durbin-Watson test statistic. 

Section 3.4 • Added section. 

Section 3.5.1 • Added section. 

Section 3.5.2 • Terminology change from mean-shift to mean model. 

Section 4.3 • New figure for Figure 8. 

Section 4.5.2 • Added section. 

Section 4.5.3 • Added section. 

Section 6.0 • Added section. 
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REV 
RELEASE 

DATE 
SECTION CHANGES 

5.0 
Feb 

2015 

Section 1.1 • Added content regarding the measurement boundary and accounting for all 

energy and mass flows crossing the boundary. 

• Added content about the inclusion of process parameters within the energy mode.  

• Added content regarding the handling of data from control systems. Included 

Figure 4 and referenced weighted regression.  

Section 1.2 • Added section. 

Section 2.2 • Added section. 

Section 4.4.3 • Added section: Savings Calculation by Bottom-Up Approach. 

Section 4.4.4 • Added section: Savings Calculation by KPI Based Classification. 

Appendix E • Added clarifying language about using weighted regression to determine 

coefficient values. 

Appendix F • Added Appendix F: KPI Bin Model.  

Appendix G • Added Appendix G: Summary of Competing Models. 

6.0 
June 

2017 

Section 1.2  • Eliminated reference to dialoguing with key contractors.  

Section 1.3  • Require more rigorous documentation when temperature is omitted from model. 

• Revised Figure 2.  

• Replaced Washington State University Agricultural Weather Network weather 

source with Weather Underground.   

Section 2.1 • Added bullet for baseline period for re-enrollment.  

• Clarification of weather dependent models.   

Section 2.2 • Emphasized collecting and screening of data.  

• Revised Figure 3.  

Section 2.4 • Replaced figure 6 with a more representative data set.  

• Added reference to degree day models.  

• Added reference to exploring non-linear and interactive effects.  

Section 3.4 • Revised Figure 10. 

Section 3.5.1 • Revised application of back-cast method. 

Section 4.3 • Modified default method for establishing valid range to +/- 3 sigma.  

• Added clarification of how to calculate savings when data is out of range and 

savings are high. 

Section 4.4.1 • Revised savings calculations for back-cast method.  

Section 4.4.3 • Added section.  

Section 4.4.4 • Revised the use of the bottom-up approach.  

Section 4.5.3 • Revised t-test. 

Section 5.1.1  • Added section. 

Section 5.1.2  • Added section. 

Section 5.1.3 • Added section. 

Section 5.2.1 • Added section. 

Section 5.2.2 • Added section. 

Section 5.2.3 • Added section. 
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Section 6.4 • Added section. 

Appendix H • Revised Flow Diagram 
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2018 

Introduction 
• Added introduction. Six major section titles changed in document to reflect those 

listed in the introduction. 

Section 1.1 • Revised Figure 1. 

Section 1.3 • Revised Figure 2. 

Section 1.4 • ASHRAE reference updated. 

Section 2.1 • Minimum number of baseline data points is a guideline. 

Section 2.2 
• Data screening changed from 4σ to 3σ. 

• Added permissibility of interpolating or replacing missing data.  

Section 2.4 
• Added key factors for considering a degree-day approach. 

• Added ways to identify and address multi-collinearity. 

Section 2.4.1 • Added section, including Table 2.  

Section 3.2 • Replaced ASHRAE reference for R² with SEP reference.  

Section 3.4 • Added clarifying language for applying ±4σ control limits to screening of residuals.  

Section 4.2 
• Changed “in-service” date to M&V start date when adjusting for concurrent 

incentivized projects.  

Section 4.3 

• Added clarifying comments as when to use 3σ and 10% of range for valid limits of 

the model.  

• Added option to use expected value of savings when an acceptable capping limit 

cannot be applied.   

Section 4.4.5 

 
• Savings Calculation by Key Performance Indicator (KPI) Bin Model has been 

removed. 

Section 4.5.3 • Revised application of t-test from one-sided to two-sided test. 

Section 6.0 

 
• Section generalized for SEM projects. 

• Added fourth bullet point.  

Appendix B 
• Changed project M&V end date to M&V start date when adjusting for incentivized 

projects in the reporting period.  

Appendix D • Added heating and cooling degree-days. 

Appendix H • Appendix added.  

KPI Bin 

Method 
• Removed appendix for KPI Bin Method (Formerly Appendix F). 

 

 

 


